首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34708篇
  免费   4535篇
  国内免费   2448篇
电工技术   2377篇
技术理论   4篇
综合类   6221篇
化学工业   4005篇
金属工艺   4699篇
机械仪表   2709篇
建筑科学   2442篇
矿业工程   331篇
能源动力   2252篇
轻工业   767篇
水利工程   158篇
石油天然气   125篇
武器工业   251篇
无线电   3228篇
一般工业技术   5925篇
冶金工业   360篇
原子能技术   303篇
自动化技术   5534篇
  2024年   67篇
  2023年   822篇
  2022年   961篇
  2021年   1049篇
  2020年   1275篇
  2019年   1143篇
  2018年   1081篇
  2017年   1375篇
  2016年   1400篇
  2015年   1584篇
  2014年   2235篇
  2013年   2359篇
  2012年   3252篇
  2011年   3370篇
  2010年   2879篇
  2009年   3434篇
  2008年   2114篇
  2007年   2889篇
  2006年   2486篇
  2005年   934篇
  2004年   594篇
  2003年   567篇
  2002年   503篇
  2001年   417篇
  2000年   482篇
  1999年   448篇
  1998年   290篇
  1997年   222篇
  1996年   243篇
  1995年   204篇
  1994年   187篇
  1993年   168篇
  1992年   141篇
  1991年   135篇
  1990年   98篇
  1989年   68篇
  1988年   62篇
  1987年   60篇
  1986年   25篇
  1985年   15篇
  1984年   12篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   14篇
  1979年   2篇
  1965年   1篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
91.
An integrated model of ultrasonic vibration enhanced friction stir welding (UVeFSW) is developed by integrating the thermal-fluid model with the ultrasonic field model and tool torque model. The tool torque and the heat generation rate at tool/workpiece contact interfaces are coupled with the interfacial temperature, strain rate and ultrasonic energy density. The model is used in quantitatively analysing the effects of ultrasonic vibration on tool torque and thermal processes in friction stir welding (FSW). The results show that ultrasonic vibration reduces the flow stress, which results in a decreasing of tool torque, interfacial heat generation rate and interfacial temperature. The complicated interaction of ultrasonic energy with the thermal processes in FSW leads to a gentle thermal gradient and an enhanced plastic material flow in UVeFSW. The model is validated by a comparison of the calculated thermal cycles and tool torque at various welding parameters with the experimentally measured ones.  相似文献   
92.
Three types of SiBCN: carbon-lean, -moderate and -rich powders with the same Si/B/N mole ratio were subjected to high-energy ball milling to yield an amorphous structure. The effects of carbon content on microstructures, solid-state amorphization, surface characteristics and thermal stability of the as-milled powders were studied in detail. Results showed that the increases in carbon content can drive solid-state amorphization accompanied by strain-induced, crystallite refinement-induced and/or chemical composition-induced nucleation of nano-SiC from an amorphous body. The specific surface area increases as carbon content increases. The amorphous networks of Si–C, C–B/C–C, C–N, B–N and C–B–N bonds that compose the amorphous nature, but the species and contents of the chemical bonds are carbon content-dependent. Carbon-moderate powders possess satisfying thermal stability while carbon-rich ones perform the worst. Mechanical alloying derived SiBCN powders have outstanding oxidation resistance below 800 °C; however only carbon-moderate powders show desirable anti-oxidation ability at higher temperatures. Thus, mechanical alloying of SiBCN appears a suitable technique for developing amorphous matrix materials for practical applications.  相似文献   
93.
In the present study, ablation behavior and properties of BN-MAS (magnesium aluminum silicate) composites impinged with an oxyacetylene flame at temperatures up to 3100 °C were investigated. As ablation time ranged from 5 to 30 s, the mass and linear ablation rates increased from 0.0027 g/s and 0.001 mm/s to 0.0254 g/s and 0.087 mm/s, respectively. A SiO2-rich protective oxide layer formed during the ablation process, which contributed to the oxidation resistance of the composites. Ablation products mainly consisted of magnesium-aluminum borosilicate glass, mullite, spinel and indialite. The thermal oxidation of h-BN during flame ablation and scouring of MAS by high-speed gas flow were the main ablation mechanisms.  相似文献   
94.
Expanded graphite with nano SiC and amorphous SiCxOy coating was successfully prepared through pyrolysing silane coupling agent (SCA), where the grafting of SCA dominated the final products. The results show that mainly amorphous SiCxOy coating covers expanded graphite at 1000 °C, regardless of the SCA concentration. In comparison, nano SiC coating can be synthesized at 1200 °C depending on the good dispersion of SCA (with a SCA concentration of 50 vol%). The formed SiC coating contributes to much higher peak oxidation temperature (812.1 °C) than 678.0 °C of the pure expanded graphite. Meanwhile, the oxidation activation energies of expanded graphite are remarkably improved from 149.15 kJ/mol to 176.16 kJ/mol (based on Kissinger method), attributing to the derived nano SiC and SiCxOy coating.  相似文献   
95.
The 0.8Bi3.15Nd0.85Ti3O12 (BNdT)-0.2CoFe2O4 (CFO) composite multiferroic ceramics have been fabricated by spark plasma sintering (SPS) at 850?°C. The relative density of as-sintered SPS ceramic reaches 97.4 (±0.3)%. The composites are composed of pure BNdT and CFO phases without any preferred c-orientation. The a-orientation preference is more obvious perpendicular to the pressure direction. The average grain-sizes of BNdT and CFO are 163 and 146?nm, respectively. The BNdT phase has more grains below 100?nm (~20%). The super energy-dispersive X-ray analyses suggest no serious reaction between BNdT and CFO. The Raman spectrum verifies the nano-structure of the SPS ceramic via the broadening bands and peak shifts. The Curie temperature of the SPS ceramic declines to 560?°C with stabilized dielectric loss. The grain boundary resistance plays a dominant role on impedance above 700?°C. The remanent polarization approaches to 15.2?μC/cm2 (300?kV/cm) with lower coercive fields (?89/+95?kV/cm).  相似文献   
96.
Densification behavior, mechanical and thermal properties of ZrC1 ? x ceramics with various C/Zr ratios of 0.6–1.0 have been investigated by two-step reactive hot pressing of ZrC and ZrH2 powders at 30 MPa and 1500–2100 °C. The two-step reactive hot pressed ZrC1 ? x ceramic has a higher relative density (> 95.3%) than that (91.9%) of stoichiometric ZrC sintered at 2100 °C. A cubic Zr2C-type ordered phase forms in the ZrC1 ? x sample obtained at a ZrC/ZrH2 molar ratio of 0.6 at a relatively low temperature of 1100 °C. The decrease in C/Zr ratio is beneficial to densification of ZrC1 ? x ceramic, however, excess grain growth occurs after sintering above densification temperature. The elastic modulus and Vickers hardness decrease with decreasing the C/Zr ratio. With decreasing the C/Zr ratio, both thermal conductivity and specific heat decrease due to the enhanced scattering of conducting phonons and electrons by carbon vacancies.  相似文献   
97.
An optimization design method is presented to reduce the undesirable vibrations caused by clearance for planar linkage mechanism. A clearance joint is defined and considered a contact/impact force constraint. Contact and impact force models for the clearance joint are established using a normal contact force model based on Hertz model with energy loss and a tangential friction model based on modified Coulomb model with dynamic friction coefficient, respectively. In view of the clearance joint, dynamic equations and optimization method for a planar four-bar mechanism are then presented as an application example. The optimization aims to minimize the maximum absolute acceleration peaks of the mechanism by determining the link lengths of the planar linkage mechanism. Finally, the optimization design is solved by a generalized reduced gradient algorithm. Results show evident decrease in vibration peaks of the mechanism and obvious reduction in the contact forces in the clearance joint, which contribute to a good performance of planar linkage mechanism systems.  相似文献   
98.
《Ceramics International》2020,46(1):186-195
The Al2O3/SiO2–B2O3–Al2O3–Na2O glass/Al2O3 joints reinforced cooperatively by glass matrix and in-situ Al4B2O9 whiskers were obtained via a low-melting borosilicate glass braze. The composition of glass seam transformed from SiO2–B2O3–Na2O to SiO2–B2O3–Al2O3–Na2O due to continuous diffusion and dissolution of Al2O3. An appropriate amount of [AlO4] units introduced into the glass braze played a vital role in strengthening the glass network structure resulting to considerably improved mechanical strength of the glass seam. Meanwhile, plenty of in-situ Al4B2O9 whiskers growing from the Al2O3/glass braze interface to the center of glass seam in various directions generated. Three-dimensional crisscross structures were fabricated at the Al2O3/glass braze interface domains, where were enhanced by crack-bridging and pull-out effect of the whiskers. Generally, ascribed to the cooperative reinforcement of the glass matrix in the seam and in-situ Al4B2O9 whiskers at Al2O3/glass braze interface domains through reactions of Al2O3 and borosilicate glass braze, strength of the as-brazed joints was promoted prominently. The shear strength of the joints reached a maximum of 61 MPa brazed at 1050 °C for 60 min.  相似文献   
99.
In this article, a novel fuzzy adaptive finite-time nonsmooth controller is developed to handle the finite-time tracking problem for a class of uncertain nonlinear systems. Different from traditional fuzzy adaptive approximation methods, proposed method contains only one adaptive parameter, no matter how many states there are in the system. By constructing a new Lyapunov function with prescribed performance bound, the transient and steady performances of control system can be ensured. Further, based on a criterion of finite-time semiglobal practical stability and backstepping technology, a novel fuzzy adaptive finite-time nonsmooth control method is designed. It can be demonstrated that proposed control can effectively ensure tracking error tends to small neighborhood in a finite time. Finally, two examples have been simulated by the proposed control method, and it shows effective tracking performance.  相似文献   
100.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号